2013 NGWA Summit

DYNSYSTEM – Lessons Learned From 30 Years of Finite Element Modeling Applications

Karen Kelley Kristina Masterson Brendan Harley Mathew Gamache Robert Fitzgerald

San Antonio, Texas April 29, 2013

DYNSYSTEM – Lessons Learned From 30 Years of Finite Element Modeling Applications

- Evolution and development of DYNSYSTEM finite element modeling codes (History - Timeline format)
- Experience
 - 200+ model applications conducted over 30 years
 - Used in litigation cases
- Features Production-oriented, modeler-oriented code

DYNSYSTEM

AQUIFEM-DYNSYSTEM "Genealogy"

- Late 1950s-1960s: Early Finite Element model development for structural engineering
- Late 1960s-Early 1970s: CAFE/DISPER coastal simulation and dispersion models
- Early 1970s: CAFE converted to AQUIFEM (single layer groundwater flow simulation)
- Late 1970s Early 1980s: AQUIFEM-N (multi-layer simulation) and DISPER-GW developed
- Early 1980s: AQUIFEM-N upgraded/converted to DYNFLOW by CDM
- 1980s: DYNTRACK and DYNPLOT

AQUIFEM and AQUIFEM-N, 1970s

- 2D and quasi 3D / multi-layer
- Groundwater Flow and Mass Transport
- Example applications:
 - Coal strip-mine dewatering & blow-out prevention
 - Plume impacts on New England pond
- Major limitations:
 - Grid size and detail
 - Numerical problems

DYNFLOW and DYNTRACK, 1980s

- Requirements
 - Groundwater flow simulation code with companion mass transport simulation code
 - Fully 3D
 - Limit numerical dispersion
- Solution
 - Finite element codes DYNFLOW and DYNTRACK
 - Mass Transport: Random Walk Method

Key Features of DYNFLOW and DYNTRACK

- Node-based calculations
- Explicit representation of model layers
- "Telescoping" water table representation
- Triangular grid
- Random Walk Method transport independent of model grid

DYNFLOW and DYNTRACK, 1980s Grace - Acton, Massachusetts

- First DYNTRACK application
- Identified unexpected contaminant pathway through fractured rock to supply wells
- Used to design targeted remedial pumping scheme that successfully protected the supply wells

DYNFLOW and DYNTRACK, 1980s Grace - Acton, Massachusetts

International Groundwater Modeling Center Review 1985

- Early nationwide Superfund applications
- International Ground Water Modeling Center (IGWMC) review of DYNSYSTEM source codes
- Test cases
- June 1985: "... DYNFLOW and DYNTRACK computer codes are appropriate for use in simulating ground-water flow and contaminant transport at the Price Landfill site." (USEPA Office of Waste Program Enforcement, 1985)

Iterative Solvers – mid to late 1980s

- Gauss Elimination Solver: Memory Intensive and Slow
- Iterative Solvers (successive over-relaxation, conjugate gradient, algebraic multi-grid) advanced practical modeling capability
 - Implementation on PCs
 - More detailed multi-layered models
 - Transient Simulations

DYNFLOW and DYNTRACK, late 1980s Nassau County, New York

- First PC application of DYNFLOW
- Objective: Evaluate NYSDEC imposed cap on County pumping
- Shared model with County and trained County staff
- County staff continued model applications independently

Nassau County Model Expansion and Applications 1990-Present

Automatic Grid Generation and Grid Editing 1992

Initial Demonstration, 1992 800 700 600 500 400 300 200 100 200 800 100 300 500 600 700 FEFT Figure 3 - Example of Grid Created using GRIDGEN

The ability to quickly create and modify computational grids overcame one of the largest impediments to finite element modeling.

Automatic Grid Generation

Savannah and Hilton Head Studies, Savannah Harbor Study, **Converted USGS Coastal Model Grid Detail Along River** 3800 South Carolina 3600 KS/2 3400 3200 Georgia 3000 Hilton Head, SC 2800 Florida 2600 200 400 600 -400 -200 800 1000 1200 1400 THOUSANDS OF FEET Iterative 1988 PC 1992 Auto 1995 Link 1989 1990 1993 **Solvers DYNPLOT DYNSWIM Grid Gen DYNAPL** Version to GIS

DYNSWIM/DYNAPL

Salt Water Intrusion

Vadose Zone Air Flow and Vapor Transport

3D Graphics and Animation

Coupled Flow and Transport (DYNCFT), 2000 Gaza Coastal Management Plan

- Objective: Limit salt water intrusion
- SWI simulation requires detailed stress input
- Result: Input data processing developments (gage commands)
 - Long simulation periods
 - Overlapping data sets
 - Data gaps
 - Multiple sources

San Gabriel Basin

Impacts of Transient Conditions on Groundwater Plume Transport

Ongoing Development - Linkage to 3D Visualization Software

Ongoing Development - Dual Porosity

- Solute transport in heterogeneous formations
- Accounts for relatively mobile and immobile aquifer fractions
- Solute storage in immobile fraction can create "tailing"

Ongoing Development - Mass Flux

Unsat **Zone Proc**

Non-Equil Sorption

Multiple Const

2010 **EVS/MVS**

2011 Dual **Porosity**

2013 **ISWMM**

Current Developments

- Linkage with Leapfrog Hydro to streamline development of complex model stratigraphic layering
- ISWMM Linkage of DYNFLOW to USEPA SWMM stormwater model to quantify groundwater impact on collection system flows
- DYNAIR/DYNVAP Vapor Intrusion Studies

Takeaways

- Finite Element model grid flexibility
- Streamlined transient input & output increased productivity and improved simulation and understanding
- Benefits of "live" code frequently applied and updated to meet new modeling challenges
- Benefits of creating links to new tools and technologies (e.g. animation, 3D visualization)

Acknowledgements

- Early FE: Jerome J. (Jerry) Connor
- Café/Disper: Jim Pagenkopf, Bryan Pearce
- Aquifem: John L. Wilson, Antonio Sa Da Costa
- DYNFLOW/DYNTRACK: Peter Riordan, Robert P. Schreiber, Brendan M. Harley
- Aquifem-N: Lloyd Townley
- DYNPLOT: Peter Shanahan, Bruce Jacobs
- Code Developer: Robert Fitzgerald

Questions – www.dynsystem.com

DYNTRACK Computations

Concentration

Model Grid and Computations

 Nodal concentrations are calculated at a given node/level by dividing the total weight [M] of all particles located within the nodal area by the nodal pore volume [L³] at the end of each time step

Nodal Area (cross-section view)

DYNTRACK Computations

Computed Concentration

- Extraction well concentrations are calculated as the total weight [M] of all particles entering the nodal area associated with the well (or defined radius) by the volume of water extracted [L³] during each time step
- Particles entering the nodal area associated with an extraction well are removed from the mode

Model Grid and Computations

